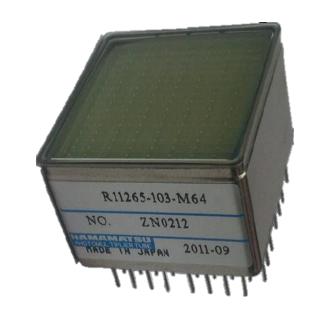

PRACTICAL TEST BENCH USED FOR TESTING PHOTOMULTIPLIER TUBES, TYPE MAPMT

<u>Vlad-Mihai Plăcintă</u>, Lucian Nicolae Cojocariu


Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH)

Stefan Cel Mare University of Suceava

R11265-103-M64 tube

Typical characteristics	R11265-103-M64
Spectral response range	185-650 nm
Window material / Thickness	UV glass / 0.8 mm
Geometrical dimensions	26.2 x 26.2 mm ²
Photocathode minimum effective Area	23 x 23 mm ²
Number of pixels / Dimensions	64 / 2.9 x 2.9 mm ²

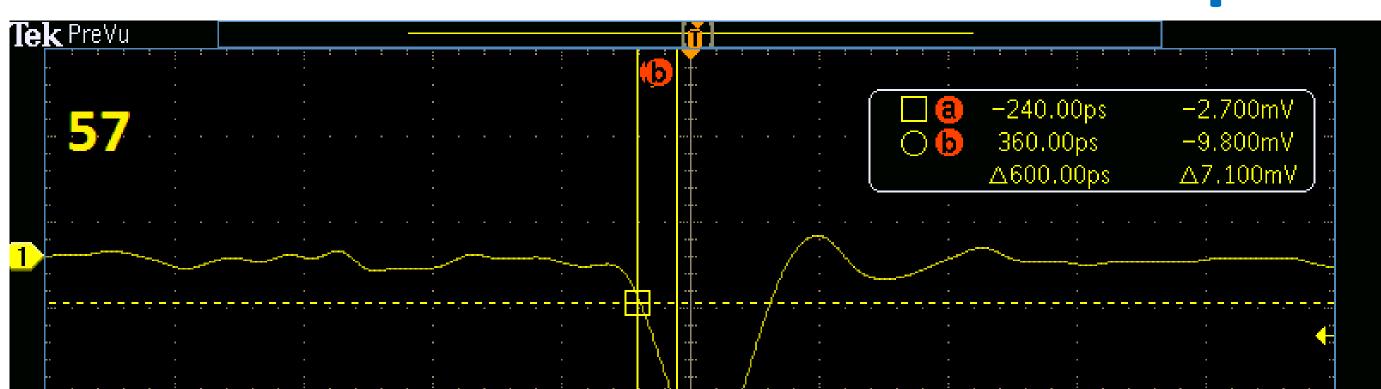
IFIN-HH

usu

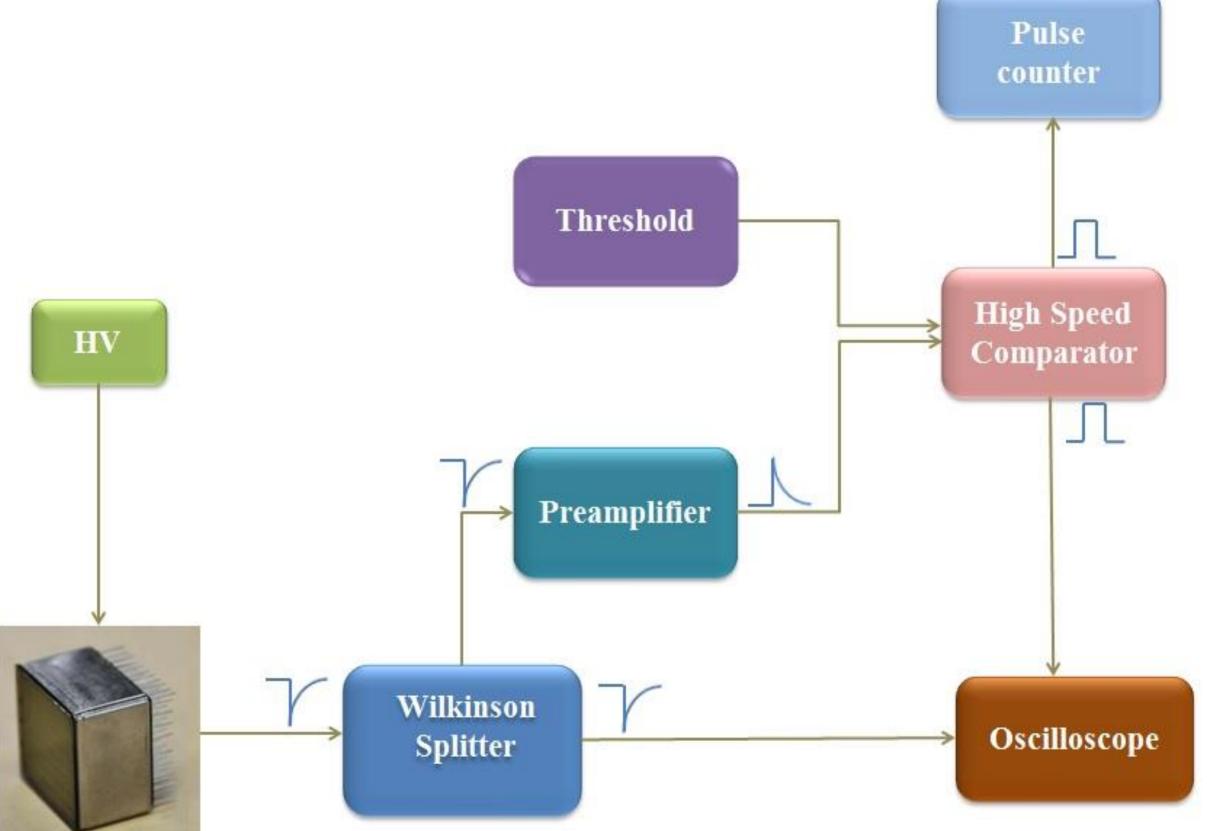
Universitatea

Ştefan cel Mare

Suceava



During the Upgrade of LHCb most sub detectors will be replaced in order to carry out physics measurements at increased luminosity for proton-proton collisions and an increased read-out speed, 40 times higher then present rate for some detector subsystems. The latter is the case of the RICH subdetectors (Ring Imaging Cherenkov), which are two systems used for particle identification through the measurement of the Cherenkov angle. The baseline technology is the Multi-anode Photomultiplier tube (MaPMT), which can provide a very good single photon sensitivity in a range 200-600 nm, good spatial resolution and a high quantum efficiency.


Photocathode material	Super Bialkali
Number of dynodes	12
Maximum supply voltage	1100 V
Gain	1 x 10 ⁶ at 1000 V
Anode dark current (each anode)	0.4 nA
Rise / transit time	0.6 / 5.1 ns
Uniformity between each anode	1 :3

The photomultiplier tube assembled with standard socket from Hamamatsu (E11906)

The practical test bench

······································	· · ·	· · ·		· · ·	· ·	
··· · · · · · · · · · · · · · · · · ·			· · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
 			·••·			
······································			· · · · · · · ·			· · · · ·
		· · ·	(2.00ns	2.50GS/s	(1)	
<mark>(1)</mark> 5.00mV	'Ω		(⊡→▼ 580.0000ps	: 1000 points		
🔢 🚺 Amplitudi	e 12.0mV					28 Jun 2015
(1) –Pulses	1	Low resolution	n			L <u>14:41:13</u>
Coupling	Termination	Invert	Bandwidth			
DC AC	1MΩ 75Ω <mark>50Ω</mark>	On <mark>Off</mark>	Full	(1) Label	More	

Typical waveform measured directly for a dark current event from an anode of the MaPMT, displays the response time of the tube.

Simple test bench for the measurement of dark current rate and signal trigger rate.

	Da	ark counts	Future Plans
			The plans for future are
1	2 3 4 5 6 7 8		to finish the test bench and
9	10 11 12 13 14 15 16		to continue the testing of
17	18 19 20 21 22 23 24		R11265 tube for single
25	26 27 28 29 30 31 32		photoelectron signals .
33	34 35 36 37 38 39 40		The final test bunch will
41	42 43 44 45 46 47 48		include the R11265 together
49	50 51 52 53 54 55 56		
57	58 59 60 61 62 63 64		with ASICs (Appli-cation

10 pixels were used for testing

The R11265-M64-103 mounted inside of the dark box

Currently a software code in C language to count pulses is under development even if preliminary inspection using the oscilloscope shows that the dark current average rate is about 1 Hz pe pixel.

Specific Integrated Circuit) like MAROC3 or SPACIROC2 produced by Omega micro. The latter front-end chips i.e. MAROC3 and SPCIROC2, were designed exactly to analyse and record the 64 channel photoelectron signals coming from MaPMTs.