
❖ An FPGA from Microsemi’s Axcelerator family has been chosen, AX250-FBG484:
✓ 0.15 µm CMOS antifuse process technology, one time programmable;
✓ 1408 register cells (R-cells), 2816 combinational cells (C-cells), 55 kb of embedded

RAM, 248 I/Os, 4 hardwired clocks and 4 routed clocks;

❖ So far, the FPGA was tested with 20 MeV protons at SIRAD facility from Legnaro,
and with 8-50 KeV X-ray at University of Padova;

❖ Several versions of firmware were used in irradiation tests:
✓ R-cells with a TMR architecture and a minority voter (up to 60 %);
✓ R-cells, C-cells and I/O blocks configured to read 128 passive inputs;
✓ Embedded RAM test firmware (up to 70 %);

❖ Custom DAQ system designed to monitor the device and its firmware activity;

❖TID results:
✓ the FPGA prove to be resilient to high dose

rates, 1 krad/s, and high TID, 8 Mrad (Si);
✓ the logic error rates were very low;
✓ the embedded RAM prove to be sensible to

proton induced SEUs: 3.6 · 10-14 cm2 /bit;
✓ high leakage current was seen in the core

power rail at high TID with very high dose rate,
over 0.3 Mrad (Si);

✓ the current variation is correlated with the high dose, and most fast changes due to
beam fluctuations;

✓ proton induced TID effects were confirmed by X-Ray runs;
✓ annealing tests have been carried out after each irraddiation test, and show a

strong annealing effect in device over 1 h to 7 days.

❖ The smallest device from Xilinx’s KINTEX-7 family has been tested, XC7K70T-
FBG484C:

✓ manufactured on 28 nm HKMG technology node based on TMSC’s high
performance and low power process (HPL);

✓ 82 k user Flip-Flops, 4.86 Mb of Block RAM (BRAM), 300 I/Os, 18.8 Mb of
configuration memory (CRAM);

❖ Different particle beams were used to measure its radiation tolerance:
✓ 35 MeV and 200 MeV protons; (Juliech FZJ and PSI)
✓ Ions with a broad range of Linear Energy Transfer (LET): from 1.3 to 32.4 MeV ·

cm2/mg; (Louvain CRC and Legnaro LNL)
✓ 8-50 KeV X-ray photons; (Padova University)
✓ Mixed field of particles from 24 GeV protons on a Copper target at CHARM CERN.

❖ Several resources were tested: CRAM, BRAM, user Flip-Flops (with TMR) and the IO
Blocks;

❖ A custom DAQ system has been designed to monitor the device firmware activity 
and its electrical parameters;

❖TID results
➢ 4 samples were tested with a 

TID from 0.44 up to 1 Mrad (Si);
➢ 35 MeV protons:
✓ CRAM SEU cross-section: 

4.9 · 10-15 cm2/bit;
✓ BRAM SEU cross-section: 

6.9 · 10-15 cm2 /bit;
✓ IO blocks SEU cross-section: 

2.22· 10-11 cm2 /device.

❖Ion SEE results
✓ SEL LET threshold:  around 15 MeV · cm2 /mg;
✓ SEFI events seen at LET of 32 MeV · cm2 /mg;
✓ CRAM SEU threshold: LET below 1.3 MeV · cm2 /mg;
✓ CRAM SEU cross-section at LET=1.3 MeV · cm2 /mg: 0.47 · 10-10 cm2 /bit;
✓ CRAM SEU cross-section at 32 MeV · cm2 /mg LET: 0.26 · 10-8 cm2 /bit;
✓ IO blocks SEU cross-section at LET of 8.59 MeV · cm2 /mg: 0.6 · 10-5 cm2 /device;
✓ high current states were observed in the VCCINT (core) power rail (20 times larger 

than its baseline value), but recovered with full reconfiguration;
✓ micro-latchups highlighted by 100 mA current jumps in the VCCAUX power rail 

were seen, but recovered with power cycle.
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❖The commercial of the shelf components (COTS), especially FPGAs, have been
considered for experiments in harsh environments with radiation background:
✓ Space experiments (e.g. ISS);
✓ Accelerator experiments (e.g. LHC at CERN);

❖The FPGAs are viable replacement solutions for Application Specific Integrated
Circuits (ASICs) due to their:
✓ low cost;
✓ high logic density;
✓ low non-recurring engineering costs (NRE);

❖Though using FPGAs in such applications has several advantages, these devices are
sensitive to radiation induced effects:
✓ Single Event Effects (SEEs);
✓ Cumulative effects (Total Ionizing Dose–TID and Displacement Damage–DD);

❖During the second LHC long shutdown, started in 2019, the LHCb detector and its
sub-detectors will be upgraded to operate at a higher luminosity;

❖SRAM-based FPGAs (KINTEX-7) were selected to be used in the digital readout
boards of the LHCb RICH sub-detectors, for their sensors and frontend electronics;
✓ Microsemi’s antifuse FPGAs are the backup solution;

❖An irradiation testing campaign has been implemented and established the
radiation tolerance for both devices.
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SRAM-Based FPGA Antifuse FPGA

𝟓𝟖𝐍𝐢 beam 

20.4 MeV · 𝐜𝐦𝟐/mg LET

1000 particles/𝐜𝐦𝟐/s

Total fluence: 𝟏𝟎𝟏𝟑particles/𝐜𝐦𝟐

Average flux: 5 · 𝟏𝟎𝟖 𝐩𝐚𝐫𝐭𝐢𝐜𝐥𝐞𝐬/𝐜𝐦𝟐/𝐬

Operation in the LHCb Environment
❖For the SRAM-based FPGA while operating in the Phase I of the LHCb Upgrade we  

expect ~ 20 – 30 k  configuration SEUs per hour in about 1200 devices;
✓ Most of them will not affect the user logic, but a very small fraction can induce high 

current events which can disturb the FPGA operation or affects the information flow. 

❖ The antifuse FPGA will not show any radiation induced effects if will be used during 
the Phase I of the LHCb Upgrade;

✓ However, its main drawback is the fact that is a one-time programmable device.

LHCb Upgrade Phase I

http://www.nipne.ro/dpp/Collab/LHCb/upgrade.html
https://lhcb-public.web.cern.ch/lhcb-public/
https://lhcb-public.web.cern.ch/lhcb-public/
https://cds.cern.ch/record/2158851/files/LHCb-PUB-2016-014.pdf

